Added the tested code for synth_and_ana
This commit is contained in:
99
synth_and_ana.py
Normal file
99
synth_and_ana.py
Normal file
@@ -0,0 +1,99 @@
|
||||
# Synthetise new data and analyse it directly to return fit parametersi
|
||||
|
||||
import numpy as np
|
||||
import panda as pd
|
||||
|
||||
from fsl_mrs.core import MRS
|
||||
from fsl_mrs.utils import plotting, mrs_io
|
||||
from fsl_mrs.utils.synthetic import synthetic_from_basis as synth
|
||||
from fsl_mrs.utils.misc import parse_metab_groups
|
||||
from fsl_mrs.utils.fitting import fit_FSLModel
|
||||
|
||||
|
||||
def synth_and_ana(noise_cov,
|
||||
fit_parameters, fit_snr, fit_sdnoise, fit_varnoise,
|
||||
df_parameter_synth, basis_path, output_path,
|
||||
verbose=False):
|
||||
"""Synthetise spectra with given noise-covariance, analyse the data and
|
||||
return table of fitting parameters with a fit-plot.
|
||||
We ignore Gly. Independent scaling of Macro Molecules."""
|
||||
|
||||
# Load input
|
||||
synth_parameter = df_parameter_synth.mean().to_dict()
|
||||
basis, names, Bheader = mrs_io.read_basis(basis_path)
|
||||
|
||||
# Set the adjustment lists from our input
|
||||
broadening = [(synth_parameter["gamma_0"], synth_parameter["sigma_0"]),
|
||||
(synth_parameter["gamma_1"], synth_parameter["sigma_1"])]
|
||||
shifting = [(synth_parameter["eps_0"]), (synth_parameter["eps_1"])]
|
||||
baseline = [synth_parameter["B_real_0"], synth_parameter["B_imag_0"],
|
||||
synth_parameter["B_real_1"], synth_parameter["B_imag_1"],
|
||||
synth_parameter["B_real_2"], synth_parameter["B_imag_2"]]
|
||||
coilphase = [synth_parameter["Phi0"]]
|
||||
|
||||
# Generate synthetic data
|
||||
fidS, headerS, concentrationsS = synth.syntheticFromBasisFile(basis_path,
|
||||
concentrations=synth_parameter,
|
||||
ignore=['Gly'], ind_scaling=['mm'],
|
||||
metab_groups='mm', broadening=broadening, shifting=shifting,
|
||||
# correct for complex noise
|
||||
noisecovariance=np.divide(
|
||||
noise_cov, 2),
|
||||
# CAVE: baseline chosen manually
|
||||
baseline=baseline, baseline_ppm=(
|
||||
.2, 4.2),
|
||||
coilphase=coilphase,
|
||||
bandwidth=6000)
|
||||
# Create mrs object for further use
|
||||
mrsA = MRS(FID=fidS, header=headerS, basis=basis,
|
||||
basis_hdr=Bheader[0], names=names)
|
||||
|
||||
mrsA.ignore(['Gly'])
|
||||
mrsA.processForFitting(ind_scaling=['mm'])
|
||||
|
||||
# Scale it to Input data
|
||||
# rescaled_FID, __ = rescale_FID(mrsA.FID, 1/mrsA.scaling["FID"]*100)
|
||||
mrsA.set_FID(fidS)
|
||||
|
||||
metab_groups = parse_metab_groups(mrsA, 'mm')
|
||||
# Use Voigt line broadening, fit between .2 and 4.2,
|
||||
# with a 2nd order polynomial baseline
|
||||
FitArgs = {
|
||||
'model': 'voigt',
|
||||
'metab_groups': metab_groups,
|
||||
'ppmlim': (.2, 4.2),
|
||||
'baseline_order': 2}
|
||||
res = fit_FSLModel(mrsA, **FitArgs)
|
||||
|
||||
# Plot fitting results.
|
||||
if verbose:
|
||||
fig = plotting.plot_fit(mrsA, pred=res.pred,
|
||||
baseline=res.baseline, out="name")
|
||||
|
||||
# Combine highly correlated metabolites
|
||||
combinationList = [['Glu', 'Gln'],
|
||||
['GPC', 'PCho'],
|
||||
['Cr', 'PCr'],
|
||||
['Glc', 'Tau'],
|
||||
["NAA", "NAAG"]]
|
||||
res.combine(combinationList)
|
||||
|
||||
# Store parameters from fit
|
||||
fit_parameters.append(res.fitResults)
|
||||
fit_snr.append(res.SNR.spectrum)
|
||||
# Old version of noise
|
||||
# noise_sd=np.max(np.real(mrsA.get_spec(ppmlim=(.2,4.2))))/res.SNR.spectrum
|
||||
noise_sd = np.std(mrsA.FID[1000:1600])
|
||||
fit_sdnoise.append(noise_sd)
|
||||
noise_var = np.var(mrsA.FID[1000:1600])
|
||||
fit_varnoise.append(noise_var)
|
||||
|
||||
df_params = pd.concat(fit_parameters, ignore_index=True)
|
||||
df_params['SNR'] = fit_snr
|
||||
df_params['noise_sd'] = fit_sdnoise
|
||||
df_params['noise_var'] = fit_varnoise
|
||||
|
||||
if verbose:
|
||||
return df_params, fig
|
||||
|
||||
return df_params
|
||||
Reference in New Issue
Block a user