Compare commits
2 Commits
3373ba845f
...
675a36f2e5
| Author | SHA1 | Date | |
|---|---|---|---|
| 675a36f2e5 | |||
| 77737705f0 |
@@ -1,10 +1,13 @@
|
|||||||
# Synthetise new data and analyse it directly to return fit parameters
|
# mc_gen.py - Generating data for Monte-Carlo style simulations
|
||||||
|
#
|
||||||
|
# Author: Konstantin E Bosbach <konstantin.bosbach@mars.uni-freiburg.de>
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import time
|
||||||
|
|
||||||
from fsl_mrs.core import MRS
|
from fsl_mrs.core import MRS
|
||||||
from fsl_mrs.utils import plotting, mrs_io
|
from fsl_mrs.utils import mrs_io
|
||||||
from fsl_mrs.utils.synthetic import synthetic_from_basis as synth
|
from fsl_mrs.utils.synthetic import synthetic_from_basis as synth
|
||||||
from fsl_mrs.utils.misc import parse_metab_groups
|
from fsl_mrs.utils.misc import parse_metab_groups
|
||||||
from fsl_mrs.utils.fitting import fit_FSLModel
|
from fsl_mrs.utils.fitting import fit_FSLModel
|
||||||
@@ -31,18 +34,20 @@ def synth_and_ana(noise_cov,
|
|||||||
coilphase = [synth_parameter["Phi0"]]
|
coilphase = [synth_parameter["Phi0"]]
|
||||||
|
|
||||||
# Generate synthetic data
|
# Generate synthetic data
|
||||||
fidS, headerS, concentrationsS = synth.syntheticFromBasisFile(basis_path,
|
fidS, headerS, concentrationsS = synth.syntheticFromBasisFile(
|
||||||
concentrations=synth_parameter,
|
basis_path,
|
||||||
ignore=['Gly'], ind_scaling=['mm'],
|
concentrations=synth_parameter,
|
||||||
metab_groups='mm', broadening=broadening, shifting=shifting,
|
ignore=['Gly'], ind_scaling=['mm'],
|
||||||
# correct for complex noise
|
metab_groups='mm', broadening=broadening,
|
||||||
noisecovariance=np.divide(
|
shifting=shifting,
|
||||||
noise_cov, 2),
|
# correct for complex noise
|
||||||
# CAVE: baseline chosen manually
|
noisecovariance=np.divide(noise_cov, 2),
|
||||||
baseline=baseline, baseline_ppm=(
|
# CAVE: baseline chosen manually
|
||||||
.2, 4.2),
|
baseline=baseline, baseline_ppm=(.2, 4.2),
|
||||||
coilphase=coilphase,
|
coilphase=coilphase,
|
||||||
bandwidth=6000)
|
bandwidth=6000
|
||||||
|
)
|
||||||
|
|
||||||
# Create mrs object for further use
|
# Create mrs object for further use
|
||||||
mrsA = MRS(FID=fidS, header=headerS, basis=basis,
|
mrsA = MRS(FID=fidS, header=headerS, basis=basis,
|
||||||
basis_hdr=Bheader[0], names=names)
|
basis_hdr=Bheader[0], names=names)
|
||||||
@@ -88,3 +93,42 @@ def synth_and_ana(noise_cov,
|
|||||||
df_params['noise_var'] = fit_varnoise
|
df_params['noise_var'] = fit_varnoise
|
||||||
|
|
||||||
return df_params
|
return df_params
|
||||||
|
|
||||||
|
|
||||||
|
def mc(
|
||||||
|
n, noise_sd, df_parameter_synth, basis_path, output_path,
|
||||||
|
fit_parameters=[], fit_snr=[], fit_sdnoise=[], fit_varnoise=[]
|
||||||
|
):
|
||||||
|
"""Function for calling synth_and_ana repeatedly,
|
||||||
|
as in Monte-Carlo approach"""
|
||||||
|
runtime = time.time()
|
||||||
|
|
||||||
|
# Define workspace output path
|
||||||
|
file_out_path = str(
|
||||||
|
output_path + "noise_sd_" +
|
||||||
|
str(round(noise_sd, 3)) + "_runs_"+str(n) + ".csv"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(
|
||||||
|
"Starting noise_sd", round(noise_sd, 2), " with ",
|
||||||
|
round(n, 2), "repetitions"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Call function generation the desired amount of times
|
||||||
|
for k in range(0, n):
|
||||||
|
noise_fit = synth_and_ana(
|
||||||
|
[[np.square(noise_sd)]],
|
||||||
|
fit_parameters=fit_parameters,
|
||||||
|
fit_snr=fit_snr, fit_sdnoise=fit_sdnoise,
|
||||||
|
fit_varnoise=fit_varnoise,
|
||||||
|
df_parameter_synth=df_parameter_synth, basis_path=basis_path
|
||||||
|
)
|
||||||
|
|
||||||
|
# Print results to file
|
||||||
|
noise_fit.to_csv(file_out_path)
|
||||||
|
|
||||||
|
print(str("Finishing noise_sd", round(noise_sd, 2), " with ",
|
||||||
|
str(round(n, 2)), "repetitions, Runtime took ",
|
||||||
|
round(time.time()-runtime, 2), "[s]"))
|
||||||
|
|
||||||
|
return noise_fit, file_out_path
|
||||||
|
|||||||
45
fsl_mrs_mce/mc_sim.py
Normal file
45
fsl_mrs_mce/mc_sim.py
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
# mc_sim.py - Helpers for Monte-Carlo style simulations
|
||||||
|
#
|
||||||
|
# Author: Konstantin E Bosbach <konstantin.bosbach@mars.uni-freiburg.de>
|
||||||
|
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
def get_convergence(
|
||||||
|
output_file_paths, molecule, crit_mean=0.01, crit_std=0.10
|
||||||
|
):
|
||||||
|
"""Function checks if last two files contain converging datasets."""
|
||||||
|
|
||||||
|
if len(output_file_paths) < 2:
|
||||||
|
print("One iteration, therefore no convergence.")
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
newer_fit_results = pd.read_csv(output_file_paths[-1])
|
||||||
|
older_fit_results = pd.read_csv(output_file_paths[-2])
|
||||||
|
|
||||||
|
newer_mean = newer_fit_results[molecule].mean()
|
||||||
|
older_mean = older_fit_results[molecule].mean()
|
||||||
|
|
||||||
|
# Normalize with mean of latest dataset, to get deviation
|
||||||
|
norm = newer_mean
|
||||||
|
measure_mean = abs(abs(np.abs(newer_mean) - abs(older_mean))/norm)
|
||||||
|
|
||||||
|
newer_std = newer_fit_results[molecule].std()
|
||||||
|
older_std = older_fit_results[molecule].std()
|
||||||
|
measure_std = abs(abs(np.abs(newer_std) - abs(older_std))/norm)
|
||||||
|
|
||||||
|
if measure_mean <= crit_mean:
|
||||||
|
if measure_std <= crit_std:
|
||||||
|
convergence = True
|
||||||
|
else:
|
||||||
|
convergence = False
|
||||||
|
|
||||||
|
print(
|
||||||
|
"Convergence result for ", output_file_paths[-1], " and ",
|
||||||
|
output_file_paths[-2], "\n\t\t\t",
|
||||||
|
measure_mean, measure_std, "convergence: ", str(convergence)
|
||||||
|
)
|
||||||
|
|
||||||
|
return convergence
|
||||||
Reference in New Issue
Block a user