Compare commits

...

13 Commits

4 changed files with 242 additions and 16 deletions

View File

@@ -1,10 +1,13 @@
# Synthetise new data and analyse it directly to return fit parameters
# mc_gen.py - Generating data for Monte-Carlo style simulations
#
# Author: Konstantin E Bosbach <konstantin.bosbach@mars.uni-freiburg.de>
import numpy as np
import pandas as pd
import time
from fsl_mrs.core import MRS
from fsl_mrs.utils import plotting, mrs_io
from fsl_mrs.utils import mrs_io
from fsl_mrs.utils.synthetic import synthetic_from_basis as synth
from fsl_mrs.utils.misc import parse_metab_groups
from fsl_mrs.utils.fitting import fit_FSLModel
@@ -31,18 +34,20 @@ def synth_and_ana(noise_cov,
coilphase = [synth_parameter["Phi0"]]
# Generate synthetic data
fidS, headerS, concentrationsS = synth.syntheticFromBasisFile(basis_path,
fidS, headerS, concentrationsS = synth.syntheticFromBasisFile(
basis_path,
concentrations=synth_parameter,
ignore=['Gly'], ind_scaling=['mm'],
metab_groups='mm', broadening=broadening, shifting=shifting,
metab_groups='mm', broadening=broadening,
shifting=shifting,
# correct for complex noise
noisecovariance=np.divide(
noise_cov, 2),
noisecovariance=np.divide(noise_cov, 2),
# CAVE: baseline chosen manually
baseline=baseline, baseline_ppm=(
.2, 4.2),
baseline=baseline, baseline_ppm=(.2, 4.2),
coilphase=coilphase,
bandwidth=6000)
bandwidth=6000
)
# Create mrs object for further use
mrsA = MRS(FID=fidS, header=headerS, basis=basis,
basis_hdr=Bheader[0], names=names)
@@ -88,3 +93,51 @@ def synth_and_ana(noise_cov,
df_params['noise_var'] = fit_varnoise
return df_params
def mc(
n, noise_sd, df_parameter_synth, basis_path, output_path,
fit_parameters=[], fit_snr=[], fit_sdnoise=[], fit_varnoise=[],
shortage=False
):
"""Function for calling synth_and_ana repeatedly,
as in Monte-Carlo approach"""
runtime = time.time()
# Define workspace output path
file_out_path = str(
output_path + "noise_sd_" +
str(round(noise_sd, 3)) + "_runs_"+str(n) + ".csv"
)
if shortage:
try:
noise_fit = pd.read_csv(file_out_path)
print("Found existing file: ", file_out_path)
return noise_fit, file_out_path
except:
None
print(
"Starting noise_sd", round(noise_sd, 2), " with ",
round(n, 2), "repetitions"
)
# Call function generation the desired amount of times
for k in range(0, n):
noise_fit = synth_and_ana(
[[np.square(noise_sd)]],
fit_parameters=fit_parameters,
fit_snr=fit_snr, fit_sdnoise=fit_sdnoise,
fit_varnoise=fit_varnoise,
df_parameter_synth=df_parameter_synth, basis_path=basis_path
)
# Print results to file
noise_fit.to_csv(file_out_path)
print("Finishing noise_sd", round(noise_sd, 2), " with ",
round(n, 2), "repetitions, Runtime took ",
round(time.time()-runtime, 2), "[s]")
return noise_fit, file_out_path

124
fsl_mrs_mce/mc_in.py Normal file
View File

@@ -0,0 +1,124 @@
# mc_in.py - Helpers for Monte-Carlo style simulations
#
# Author: Konstantin E Bosbach <konstantin.bosbach@mars.uni-freiburg.de>
import numpy as np
import pandas as pd
from configparser import ConfigParser
def load_config(input_folder="input/", section="default"):
"""Loads configuration file.
If given option section="": returns list of config sections"""
# Information from config txt
try:
# Load txt
configFilePath = str(input_folder + "config.txt")
configParser = ConfigParser()
configParser.read(configFilePath)
try:
if section == "":
return configParser.sections()
else:
return configParser[section]
except input:
print(configParser.sections())
print(f"No {section} section.")
except input:
print(f"No {configFilePath} provided.")
def conc_df_from_file(input_path="input/", foundation="vivo_average",
include_molecules=[], save_df=True):
sections = load_config(input_path, "")
"""Generates concentration dataframe for mc method.
Supports different variation types (absolute/delta/relative)
Returns data_frame of different concentrations.
include_molecules needed for option some_molecules"""
# Load all relevant sections
list_parser_parameter = []
for i in sections:
if i[0:20] == "generation_parameter":
list_parser_parameter.append(load_config(input_path, i))
# Load foundation file, a line with e.g. in-vivo averages
# The code expects a one-line-foundation.
molecule_names = ['Ala', 'Asc', 'Asp', 'Cr', 'GABA', 'GPC', 'GSH',
'Glc', 'Gln', 'Glu', 'Ins', 'Lac', 'NAA', 'NAAG',
'PCho', 'PCr', 'PE', 'Scyllo', 'Tau',
'mm', 'Glu+Gln', 'GPC+PCho', 'Cr+PCr',
'Glc+Tau', 'NAA+NAAG']
if foundation == "vivo_average":
try:
df_foundation = pd.read_csv(
"basis/fit_conc_result.csv").mean().to_frame().transpose()
except:
print("No basis/fit_conc_result.csv file supplied")
# Sets all initial molecules, including some groups, to 0
if foundation == "flat":
try:
df_foundation = pd.read_csv(
"basis/fit_conc_result.csv").mean().to_frame().transpose()
for molecule in molecule_names:
df_foundation[molecule] = 0
except:
print("No basis/fit_conc_result.csv file supplied")
if foundation == "some_molecules":
try:
df_foundation = pd.read_csv(
"basis/fit_conc_result.csv").mean().to_frame().transpose()
for molecule in molecule_names:
if molecule not in include_molecules:
df_foundation[molecule] = 0
except:
print("No basis/fit_conc_result.csv file supplied")
else:
print("Only foundation mode vivo_average not chosen")
# Load values, dependent on type absolute/delta/relative
list_parameter_values = []
list_parameter_names = []
for i in list_parser_parameter:
string_values = i["amount"][1:-1]
list_values = list(map(float, string_values.split(",")))
if i["type"] == "absolute":
# set absolute values
None
elif i["type"] == "delta":
# set absolute value offset from foundation
list_values = np.add(list_values, df_foundation[i["param"]].mean())
elif i["type"] == "relative":
# set relative value from foundation
list_values = np.multiply(
list_values, df_foundation[i["param"]].mean())
list_parameter_values.append(list_values)
list_parameter_names.append(i["param"])
# Create parameter tensor
mesh_parameter_values = np.meshgrid(*list_parameter_values)
# Create 'empty' standard data
df_conc = pd.concat(
[df_foundation]*int(np.array(mesh_parameter_values[0]).size),
ignore_index=True
)
# Write parameter values into dataframe
i = 0
while i <= len(list_parameter_values)-1:
parameter_values = mesh_parameter_values[i].ravel()
parameter_name = list_parameter_names[i]
print(parameter_name, parameter_values)
df_conc[parameter_name] = parameter_values
i = i+1
if save_df:
df_conc.to_csv(str(input_path+"df_conc.csv"))
return df_conc

49
fsl_mrs_mce/mc_sim.py Normal file
View File

@@ -0,0 +1,49 @@
# mc_sim.py - Helpers for Monte-Carlo style simulations
#
# Author: Konstantin E Bosbach <konstantin.bosbach@mars.uni-freiburg.de>
import numpy as np
import pandas as pd
def get_convergence(
output_file_paths, molecule, crit_mean=0.01, crit_std=0.10
):
"""Function checks if data results from last two
files contain are within convergence criteria.
Returns Boolean"""
if len(output_file_paths) < 2:
print("One iteration, therefore no convergence.")
return False
else:
newer_fit_results = pd.read_csv(output_file_paths[-1])
older_fit_results = pd.read_csv(output_file_paths[-2])
newer_mean = newer_fit_results[molecule].mean()
older_mean = older_fit_results[molecule].mean()
# Normalize with mean of latest dataset, to get deviation
norm = newer_mean
measure_mean = abs(abs(np.abs(newer_mean) - abs(older_mean))/norm)
newer_std = newer_fit_results[molecule].std()
older_std = older_fit_results[molecule].std()
measure_std = abs(abs(np.abs(newer_std) - abs(older_std))/norm)
# check if results within convergence criteria
if measure_mean <= crit_mean:
if measure_std <= crit_std:
convergence = True
else:
convergence = False
print(
"Convergence result for ", output_file_paths[-1], " and ",
output_file_paths[-2], "\n\t\t\t",
round(measure_mean, 4), round(measure_std, 4),
"convergence: ", str(convergence)
)
return convergence

View File

@@ -1,10 +1,10 @@
from setuptools import setup
setup(name='fsl_mrs_mce',
version='0.0.1',
version='0.0.22',
description='A fsl_mrs Moncte Carlo estimation approach',
url='https://git.thoffbauer.de/konstantin.bosbach/fsl_mrs_mce.git',
author='Konstantin Bosbach',
author='Konstantin E Bosbach',
author_email='konstantin.bosbach@mars.uni-freiburg.de',
packages=['fsl_mrs_mce'],
zip_safe=False)