Compare commits

...

8 Commits

3 changed files with 131 additions and 3 deletions

124
fsl_mrs_mce/mc_in.py Normal file
View File

@@ -0,0 +1,124 @@
# mc_in.py - Helpers for Monte-Carlo style simulations
#
# Author: Konstantin E Bosbach <konstantin.bosbach@mars.uni-freiburg.de>
import numpy as np
import pandas as pd
from configparser import ConfigParser
def load_config(input_folder="input/", section="default"):
"""Loads configuration file.
If given option section="": returns list of config sections"""
# Information from config txt
try:
# Load txt
configFilePath = str(input_folder + "config.txt")
configParser = ConfigParser()
configParser.read(configFilePath)
try:
if section == "":
return configParser.sections()
else:
return configParser[section]
except input:
print(configParser.sections())
print(f"No {section} section.")
except input:
print(f"No {configFilePath} provided.")
def conc_df_from_file(input_path="input/", foundation="vivo_average",
include_molecules=[], save_df=True):
sections = load_config(input_path, "")
"""Generates concentration dataframe for mc method.
Supports different variation types (absolute/delta/relative)
Returns data_frame of different concentrations.
include_molecules needed for option some_molecules"""
# Load all relevant sections
list_parser_parameter = []
for i in sections:
if i[0:20] == "generation_parameter":
list_parser_parameter.append(load_config(input_path, i))
# Load foundation file, a line with e.g. in-vivo averages
# The code expects a one-line-foundation.
molecule_names = ['Ala', 'Asc', 'Asp', 'Cr', 'GABA', 'GPC', 'GSH',
'Glc', 'Gln', 'Glu', 'Ins', 'Lac', 'NAA', 'NAAG',
'PCho', 'PCr', 'PE', 'Scyllo', 'Tau',
'mm', 'Glu+Gln', 'GPC+PCho', 'Cr+PCr',
'Glc+Tau', 'NAA+NAAG']
if foundation == "vivo_average":
try:
df_foundation = pd.read_csv(
"basis/fit_conc_result.csv").mean().to_frame().transpose()
except:
print("No basis/fit_conc_result.csv file supplied")
# Sets all initial molecules, including some groups, to 0
if foundation == "flat":
try:
df_foundation = pd.read_csv(
"basis/fit_conc_result.csv").mean().to_frame().transpose()
for molecule in molecule_names:
df_foundation[molecule] = 0
except:
print("No basis/fit_conc_result.csv file supplied")
if foundation == "some_molecules":
try:
df_foundation = pd.read_csv(
"basis/fit_conc_result.csv").mean().to_frame().transpose()
for molecule in molecule_names:
if molecule not in include_molecules:
df_foundation[molecule] = 0
except:
print("No basis/fit_conc_result.csv file supplied")
else:
print("Only foundation mode vivo_average not chosen")
# Load values, dependent on type absolute/delta/relative
list_parameter_values = []
list_parameter_names = []
for i in list_parser_parameter:
string_values = i["amount"][1:-1]
list_values = list(map(float, string_values.split(",")))
if i["type"] == "absolute":
# set absolute values
None
elif i["type"] == "delta":
# set absolute value offset from foundation
list_values = np.add(list_values, df_foundation[i["param"]].mean())
elif i["type"] == "relative":
# set relative value from foundation
list_values = np.multiply(
list_values, df_foundation[i["param"]].mean())
list_parameter_values.append(list_values)
list_parameter_names.append(i["param"])
# Create parameter tensor
mesh_parameter_values = np.meshgrid(*list_parameter_values)
# Create 'empty' standard data
df_conc = pd.concat(
[df_foundation]*int(np.array(mesh_parameter_values[0]).size),
ignore_index=True
)
# Write parameter values into dataframe
i = 0
while i <= len(list_parameter_values)-1:
parameter_values = mesh_parameter_values[i].ravel()
parameter_name = list_parameter_names[i]
print(parameter_name, parameter_values)
df_conc[parameter_name] = parameter_values
i = i+1
if save_df:
df_conc.to_csv(str(input_path+"df_conc.csv"))
return df_conc

View File

@@ -10,7 +10,9 @@ import pandas as pd
def get_convergence( def get_convergence(
output_file_paths, molecule, crit_mean=0.01, crit_std=0.10 output_file_paths, molecule, crit_mean=0.01, crit_std=0.10
): ):
"""Function checks if last two files contain converging datasets.""" """Function checks if data results from last two
files contain are within convergence criteria.
Returns Boolean"""
if len(output_file_paths) < 2: if len(output_file_paths) < 2:
print("One iteration, therefore no convergence.") print("One iteration, therefore no convergence.")
@@ -30,6 +32,7 @@ def get_convergence(
older_std = older_fit_results[molecule].std() older_std = older_fit_results[molecule].std()
measure_std = abs(abs(np.abs(newer_std) - abs(older_std))/norm) measure_std = abs(abs(np.abs(newer_std) - abs(older_std))/norm)
# check if results within convergence criteria
if measure_mean <= crit_mean: if measure_mean <= crit_mean:
if measure_std <= crit_std: if measure_std <= crit_std:
convergence = True convergence = True
@@ -39,7 +42,8 @@ def get_convergence(
print( print(
"Convergence result for ", output_file_paths[-1], " and ", "Convergence result for ", output_file_paths[-1], " and ",
output_file_paths[-2], "\n\t\t\t", output_file_paths[-2], "\n\t\t\t",
measure_mean, measure_std, "convergence: ", str(convergence) round(measure_mean, 4), round(measure_std, 4),
"convergence: ", str(convergence)
) )
return convergence return convergence

View File

@@ -1,7 +1,7 @@
from setuptools import setup from setuptools import setup
setup(name='fsl_mrs_mce', setup(name='fsl_mrs_mce',
version='0.0.2', version='0.0.22',
description='A fsl_mrs Moncte Carlo estimation approach', description='A fsl_mrs Moncte Carlo estimation approach',
url='https://git.thoffbauer.de/konstantin.bosbach/fsl_mrs_mce.git', url='https://git.thoffbauer.de/konstantin.bosbach/fsl_mrs_mce.git',
author='Konstantin E Bosbach', author='Konstantin E Bosbach',