added 'mc' function for mc-approach

This commit is contained in:
2021-03-26 10:20:09 +01:00
parent 3373ba845f
commit 77737705f0

View File

@@ -1,10 +1,13 @@
# Synthetise new data and analyse it directly to return fit parameters
# mc_gen.py - Generating data for Monte-Carlo style simulations
#
# Author: Konstantin E Bosbach <konstantin.bosbach@mars.uni-freiburg.de>
import numpy as np
import pandas as pd
import time
from fsl_mrs.core import MRS
from fsl_mrs.utils import plotting, mrs_io
from fsl_mrs.utils import mrs_io
from fsl_mrs.utils.synthetic import synthetic_from_basis as synth
from fsl_mrs.utils.misc import parse_metab_groups
from fsl_mrs.utils.fitting import fit_FSLModel
@@ -31,18 +34,20 @@ def synth_and_ana(noise_cov,
coilphase = [synth_parameter["Phi0"]]
# Generate synthetic data
fidS, headerS, concentrationsS = synth.syntheticFromBasisFile(basis_path,
fidS, headerS, concentrationsS = synth.syntheticFromBasisFile(
basis_path,
concentrations=synth_parameter,
ignore=['Gly'], ind_scaling=['mm'],
metab_groups='mm', broadening=broadening, shifting=shifting,
metab_groups='mm', broadening=broadening,
shifting=shifting,
# correct for complex noise
noisecovariance=np.divide(
noise_cov, 2),
noisecovariance=np.divide(noise_cov, 2),
# CAVE: baseline chosen manually
baseline=baseline, baseline_ppm=(
.2, 4.2),
baseline=baseline, baseline_ppm=(.2, 4.2),
coilphase=coilphase,
bandwidth=6000)
bandwidth=6000
)
# Create mrs object for further use
mrsA = MRS(FID=fidS, header=headerS, basis=basis,
basis_hdr=Bheader[0], names=names)
@@ -88,3 +93,42 @@ def synth_and_ana(noise_cov,
df_params['noise_var'] = fit_varnoise
return df_params
def mc(
n, noise_sd, df_parameter_synth, basis_path, output_path,
fit_parameters=[], fit_snr=[], fit_sdnoise=[], fit_varnoise=[]
):
"""Function for calling synth_and_ana repeatedly,
as in Monte-Carlo approach"""
runtime = time.time()
# Define workspace output path
file_out_path = str(
output_path + "noise_sd_" +
str(round(noise_sd, 3)) + "_runs_"+str(n) + ".csv"
)
print(
"Starting noise_sd", round(noise_sd, 2), " with ",
round(n, 2), "repetitions"
)
# Call function generation the desired amount of times
for k in range(0, n):
noise_fit = synth_and_ana(
[[np.square(noise_sd)]],
fit_parameters=fit_parameters,
fit_snr=fit_snr, fit_sdnoise=fit_sdnoise,
fit_varnoise=fit_varnoise,
df_parameter_synth=df_parameter_synth, basis_path=basis_path
)
# Print results to file
noise_fit.to_csv(file_out_path)
print(str("Finishing noise_sd", round(noise_sd, 2), " with ",
str(round(n, 2)), "repetitions, Runtime took ",
round(time.time()-runtime, 2), "[s]"))
return noise_fit, file_out_path