diff --git a/fsl_mrs_mce/mc_in.py b/fsl_mrs_mce/mc_in.py index 9a88792..e5d3f7c 100644 --- a/fsl_mrs_mce/mc_in.py +++ b/fsl_mrs_mce/mc_in.py @@ -29,11 +29,13 @@ def load_config(input_folder="input/", section="default"): print(f"No {configFilePath} provided.") -def conc_df_from_file(input_path="input/", foundation="vivo_average"): +def conc_df_from_file(input_path="input/", foundation="vivo_average", + include_molecules=[]): sections = load_config(input_path, "") """Generates concentration dataframe for mc method. Supports different variation types (absolute/delta/relative) - Returns data_frame of different concentrations""" + Returns data_frame of different concentrations. + include_molecules needed for option some_molecules""" # Load all relevant sections list_parser_parameter = [] @@ -64,6 +66,15 @@ def conc_df_from_file(input_path="input/", foundation="vivo_average"): df_foundation[molecule] = 0 except: print("No basis/fit_conc_result.csv file supplied") + if foundation == "some_molecules": + try: + df_foundation = pd.read_csv( + "basis/fit_conc_result.csv").mean().to_frame().transpose() + for molecule in molecule_names: + if molecule not in include_molecules: + df_foundation[molecule] = 0 + except: + print("No basis/fit_conc_result.csv file supplied") else: print("Only foundation mode vivo_average not chosen")