Added function for conc_df generation

This commit is contained in:
2021-04-12 10:46:22 +02:00
parent 9c5ba3d860
commit 362a559c20
2 changed files with 96 additions and 1 deletions

95
fsl_mrs_mce/mc_in.py Normal file
View File

@@ -0,0 +1,95 @@
# mc_sim.py - Helpers for Monte-Carlo style simulations
#
# Author: Konstantin E Bosbach <konstantin.bosbach@mars.uni-freiburg.de>
import numpy as np
import pandas as pd
from configparser import ConfigParser
def load_config(input_folder="input/", section="default"):
"""Loads configuration file.
If given option section="": returns list of config sections"""
# Information from config txt
try:
# Load txt
configFilePath = str(input_folder + "config.txt")
configParser = ConfigParser()
configParser.read(configFilePath)
try:
if section == "":
return configParser.sections()
else:
return configParser[section]
except input:
print(configParser.sections())
print(f"No {section} section.")
except input:
print(f"No {configFilePath} provided.")
def conc_df_from_file(input_path="input/", foundation="vivo_average"):
sections = load_config(input_path, "")
"""Generates concentration dataframe for mc method.
Supports different variation types (absolute/delta/relative)
Returns data_frame of different concentrations"""
# Load all relevant sections
list_parser_parameter = []
for i in sections:
if i[0:20] == "generation_parameter":
list_parser_parameter.append(load_config(input_path, i))
# Load foundation file, a line with e.g. in-vivo averages
# The code expects a one-line-foundation.
if foundation == "vivo_average":
try:
df_foundation = pd.read_csv(
"basis/fit_conc_result.csv").mean().to_frame().transpose()
except:
print("No basis/fit_conc_result.csv file supplied")
else:
print("Only foundation mode vivo_average not chosen")
# Load values, dependent on type absolute/delta/relative
list_parameter_values = []
list_parameter_names = []
for i in list_parser_parameter:
string_values = i["amount"][1:-1]
list_values = list(map(float, string_values.split(",")))
if i["type"] == "absolute":
# set absolute values
None
elif i["type"] == "delta":
# set absolute value offset from foundation
list_values = np.add(list_values, df_foundation[i["param"]].mean())
elif i["type"] == "relative":
# set relative value from foundation
list_values = np.multiply(
list_values, df_foundation[i["param"]].mean())
list_parameter_values.append(list_values)
list_parameter_names.append(i["param"])
# Create parameter tensor
mesh_parameter_values = np.meshgrid(*list_parameter_values)
# Create 'empty' standard data
df_conc = pd.concat(
[df_foundation]*int(np.array(mesh_parameter_values[0]).size),
ignore_index=True
)
# Write parameter values into dataframe
i = 0
while i <= len(list_parameter_values)-1:
parameter_values = mesh_parameter_values[i].ravel()
parameter_name = list_parameter_names[i]
print(parameter_name, parameter_values)
df_conc[parameter_name] = parameter_values
i = i+1
return df_conc

View File

@@ -1,7 +1,7 @@
from setuptools import setup
setup(name='fsl_mrs_mce',
version='0.0.21',
version='0.0.22',
description='A fsl_mrs Moncte Carlo estimation approach',
url='https://git.thoffbauer.de/konstantin.bosbach/fsl_mrs_mce.git',
author='Konstantin E Bosbach',